

ORIGA SYSTEM PLUS OSPE

Electric Linear Actuators

The latest generation of high capacity actuators

The OSP-E series combines robustness, precision and high performance. The aesthetic design is easily integrated into any machine constructions by virtue of extremely adaptable mountings.

- For particularly high requirements regarding loads and forces
- For high-speed applications and highly dynamic motion profiles
- BHD with toothed belt and integrated heavy duty guide: roller guide or re-circulating ball bearing guide

One complete system - Seven actuator options For all possible applications

Series OSP-E..BHD Belt Actuator with integrated Guide – Ball Bearing Guide

Series OSP-E..B Belt Actuator with Internal Guide

Series OSP-E..BV Vertical Belt Actuator with integrated Ball Bearing Guide

Series OSP-E..SB Ball Screw Actuator with internal Plain Bearing Guide

Series OSP-E..SBR Ball Screw Actuator with internal Plain Bearing Guide and Piston Rod

Series OSP-E..ST Trapezoidal Screw Actuator with Internal Plain Bearing Guide

Series OSP-E..STR Trapezoidal Screw ctuator with Internal Plain Bearing Guide and Piston Rod

Belt actuator with integrated guide for heavy duty applications

The latest generation of high capacity actuators, the OSP-E..BHD series combines robustness, precision and high performance. The aesthetic design is easily integrated into any machine constructions by virtue of extremely adaptable mountings.

Belt Actuator with Integrated Guide - selective with Ball Bearing Guide or Roller Guide

PDE2600PNUK Parker Pneumatic

Options and Accessories

OSP-E..BHD Belt actuator with integrated guide

STANDARD VERSIONS OSP-E..BHD

OPTIONS

TANDEM

Standard carrier with integrated guide and magnets for contactless position sensing. Dovetail profile for mounting of accessories and the actuator itself.

DRIVE SHAFT WITH CLAMP SHAFT

DRIVE SHAFT WITH PLAIN SHAFT

ACTUATING DIRECTION Important in parallel operations, e.g. with intermediate drive shaft

Standard IN GE Fo

Standard – Bi-Parting Version

BI-PARTING VERSION For perfectly synchronised bi-parting movements.

DRIVE SHAFT WITH CLAMP SHAFT AND PLAIN SHAFT For connections with intermediate drive shaft

HOLLOW SHAFT WITH KEYWAY For close coupling of motors and external gears.

INTEGRATED PLANETARY GEARBOX For compact installation and very low backlash.

ACCESSORIES

MOTOR MOUNTINGS

END CAP MOUNTING For mounting the actuators on the end cap.

PROFILE MOUNTING For supporting long actuators or mounting the actuators on dovetail grooves.

MAGNETIC SWITCHES TYPE RS AND ES For contactless position sensing of end stop and intermediate carrier positions.

MULTI-AXIS SYSTEMS For modular assembly of actuators up to multi-axis systems.

Belt Actuator with Integrated Ball Bearing Guide Size 20 to 50 Type: OSP-E..BHD

Standard Versions:

- Belt Actuator with integrated Ball Bearing Guide
- Drive shaft with clamp shaft or plain shaft
- Choice of motor mounting side
- Dovetail profile for mounting of accessories and the actuator itself

Options:

- Tandem version for higher moments
- Bi-parting version for synchronised movements
- Integrated planetary gearbox
- Drive shaft with
 - clamp shaft and plain shaft
 - hollow shaft with keyway
- Special drive shaft versions on request

Installation Instructions

Use the threaded holes in the end cap for mounting the actuator.

Check if profile mountings are needed using the maximum allowable unsupported length graph.

At least one end cap must be secured to prevent axial sliding when profile mountings are used.

Characteristics	Description
Series	OSP-EBHD
Mounting	See drawings
Ambient temperature range	-30 °C to +80 °C
Installation	In any position
Encapsulation class	IP 54
Material	
Slotted profile	Extruded anodized aluminium
Belt	Steel-corded polyurethane
Pulley	Aluminium
Guide	Ball bearing guide
Guide rail	Hardened steel rail with high precision, accuracy class N
Guide carrier preloaded 0.02 x C, accuracy class H	Steel carrier with integrated wiper system, grease nipples,
Steel band	Hardened, corrosion resistant steel
Screws, nuts	Zinc plated steel
Mountings	Zinc plated steel and aluminium

Weight (mass) and Inertia

Series	We At stroke 0 m	eight (mass)[kg Add per metre stroke	9] Moving mass	Inertia [x 10 ⁻⁶ kgm ²] At stroke 0 m Add per metre stroke per kg m		
OSP-E20BHD	2.8	4	0.8	280	41	413
OSP-E25BHD	4.3	4.5	1.5	1229	227	821
OSP-E32BHD	8.8	7.8	2.6	3945	496	1459
OSP-E50BHD	26	17	7.8	25678	1738	3103
OSP-E20BHD*	4.3	4	1.5	540	41	413
OSP-E25BHD*	6.7	4.5	2.8	2353	227	821
OSP-E32BHD*	13.5	7.8	5.2	7733	496	1459
OSP-E50BHD*	40	17	15	49180	1738	3103

Maintenance

Depending on operating conditions, inspection of the actuator is recommended after 12 months or 3000 km operation.

Please refer to the operating instructions supplied with the actuator.

First service start-up

The maximum values specified in the technical data sheet for the different products must not be exceeded. Before taking the actuator as a machine into service, the user must ensure the adherence to the EC Machine Directive 2006/42/EG.

* Version: Tandem and Bi-parting (Option)

Sizing Performance Overview Maximum Loadings

Sizing of Actuator

The following steps are recommended for selection :

- 1. Determination of the lever arm length I_x , I_y and I_z from m_e to the centre axis of the actuator.
- 2. Calculation of the load F_x or F_y to the carrier caused by m_e $F = m_e \cdot g$
- Calculation of the static and dynamic force F_A which must be transmitted by the belt.

$$F_{A(\text{horizontal})} = F_a + F_0$$

= $M_g \cdot a + M_0 \cdot 2\pi / U_{ZR}$
$$F_{A(\text{vertical})} = F_g + F_a + F_0$$

= m_g · g + m_g · a + M_o · 2π / U_{ZR}
 4. Calculation of all static and dynamic bending moments M_x, M_y and M_z which occur in the application M = F · I

- 5. Selection of maximum permissible loads via Table T3.
- 6. Calculation and checking of the combined load, which must not be higher than 1.
- 7. Checking of the maximum torque that occurs at the drive shaft in Table T2.
- Checking of the required action force F_A with the permissible load value from Table T1.

For motor sizing, the effective torque must be determined, taking into account the cycle time.

Legend

- I = distance of a mass in the x-, y- and z-direction from the guide [m]
- m_e = external moved mass [kg]
- $m_{IA} = moved mass of actuator [kg]$
- $m_{g} = total moved mass$ $(m_{e} + m_{LA}) [kg]$
- $F_{x/y}$ = load excerted on the carrier in dependence of the installation position [N]
- $F_A = action force [N]$
- $M_0 =$ no-load torque [Nm]
- U_{ZR} = circumference of the pulley
- (linear movement per revolution) [m]
- g = gravity [m/s²]
- a_{max} = maximum acceleration [m/s²]

-Parker

Performance Overview

		1					
i	Unit	Description					
Series			OSP-E25BHD	OSP-E32BHD	OSP-E50BHD		
	[m/s]	3 ¹⁾	5 ¹⁾	5 ¹⁾	5 ¹⁾		
Linear motion per revolution of drive shaft		125	180	240	350		
Max. rpm on drive shaft		2000	1700	1250	860		
< 1 m/s:	[N]	550	1070	1870	3120		
1-3 m/s:	[N]	450	890	1560	2660		
> 3 m/s:	[N]	-	550	1030	1940		
•	[Nm]	0.6	1.2	2.2	3.2		
Max. acceleration/deceleration		50	50	50	50		
Repeatability		±0.05	±0.05	±0.05	±0.05		
stroke length	[mm]	5760 ²⁾	5700 ²⁾	5600 ²⁾	5500 ²⁾		
	oer revolution rive shaft < 1 m/s: 1-3 m/s: > 3 m/s: ion/deceleration	[m/s] per revolution [mm] ive shaft [min ⁻¹] < 1 m/s: [N] 1-3 m/s: [N] > 3 m/s: [N] ion/deceleration [m/s ²] [mm/m]	OSP-E20BHD [m/s] 3 ¹⁾ per revolution [mm] 125 rive shaft [min ⁻¹] 2000 < 1 m/s:	Image: state of the s	OSP-E20BHD OSP-E25BHD OSP-E32BHD $[m/s]$ 3^{11} 5^{11} 5^{11} per revolution $[mm]$ 125 180 240 rive shaft $[min^{-1}]$ 2000 1700 1250 < 1 m/s:		

¹⁾ up to 10 m/s on request

2) longer strokes on request

Maximum Permissible Torque on Drive Shaft Speed / Stroke (T2)

OSP-E20BHD OSP-E25BHD			OSP-E32BHD				0	OSP-E50BHD							
Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]
1	11	1	11	1	31	1	31	1	71	1	71	1	174	1	174
2	10	2	11	2	28	2	31	2	65	2	71	2	159	2	174
3	9	3	8	3	25	3	31	3	59	3	60	3	153	3	138
4		4	7	4	23	4	25	4	56	4	47	4	143	4	108
5		5	5	5	22	5	21)	5	52	5	38	5	135	5	89

Important:

The maximum permissible torque on the drive shaft is the lowest value of the speed or stroke-dependent torque value.

Example above:

OSP-E25BHD, stroke 5 m, required speed 3 m/s from table T2 speed 3 m/s gives 25 Nm and stroke 5 m gives 21 Nm. Max. torque for this application is 21 Nm.

Maximum Permissible Loads

	\sim	`
ſ	T 0	١
L	13)

T1

Series	Max. applied load Fy[N] Fz[N]		Max. mom Mx	ents [Nm] My	Mz
OSP-E20BHD	1600	1600	21	150	150
OSP-E25BHD	2000	3000	50	500	500
OSP-E32BHD	5000	10000	120	1000	1400
OSP-E50BHD	12000	15000	180	1800	2500

Loads, Forces and Moments

Combined loads

If the actuator is subjected to several forces, loads and moments at the same time, the maximum load is calculated with the equation shown here.

The maximum permissible loads must not be exceeded.

Maximum Permissible Unsupported Length

Stroke length

The stroke lengths of the actuators are available in multiples of 1 mm up to 5700 mm.

Other stroke lengths are available on request.

The end of stroke must not be used as a mechanical stop.

Allow an additional safety clear-ance at both ends equivalent to the linear movement of one revolution of the drive shaft, but at least 100 mm.

The use of an AC motor with frequency converter normally requires a larger clearance than that required for servo systems.

For advice, please contact your local Parker Origa technical support department.

- * For Bi-parting version the max. load (F) is the total load of both carriers $F = F_{carrier 1} + F_{carrier 2}$
- k = Max. permissible distance between mountings/Profile Mounting for a given load F.

When loadings are below or up to the curve in the graph below the deflection will be max. 0.01 % of distance k.

Equation of Combined Loads

The total of the loads must not exceed >1 under any circumstances.

Maximum Permissible Unsupported Length – Placing of Profile Mounting

Integrated Planetary Gearbox Series OSP-E..BHD with Integrated Planetary Gearbox (Option)

Features:

- Highly compact and rigid solution fully integrated in the drive cap housing
- Purpose designed for the BHD series.
- Available with three standard ratios (3, 5 and 10)
- · Very low backlash
- A wide range of available motor flanges

Please contact your local Parker Origa technical support for available motor flanges.

Standard Version:

• Gearbox on opposite side to carrier.

Note:

When ordering, specify model/type of motor and manufacturer for correct motor flange.

Material:

Aluminium (AL-H) / Steel (St-H)

Performance Overview

Characteristics		Unit	Description		
Series			OSP-E25BHD	OSP-E32BHD	OSP-E50BHD
Ratio (1-stage)	i			3/5/10	
Max. axial load	Famax	[N]	1550	1900	4000
Torsional rigidity (i=5)	C _{t.21}	[Nm/arcmin]	3.3	9.5	25.0
Torsional rigidity (i=3/10)	C _{t.21}	[Nm/arcmin]	2.8	7.5	222.0
Torsional backlash	J _t	[arcmin]		<12	
Linear motion per revolution of drive shaft		[mm]	220	280	360
Nominal input speed	n _{nom}	[min ⁻¹]	3700	3400	2600
Max. input speed		n _{1max}		[min ⁻¹] 6000)
No-load torque at Nominal input speed	T ₀₁₂	[Nm]	<0.14	<0.51	<1.50
Lifetime		[h]		20 000	
Efficiency	η	[%]		>97	
Noise level (n ₁ =3000 min ⁻¹)	L _{PA}	[db]	<70	<72	<74

Dimensions

Dimension table (mm) and additional weight

Series	NA	NB	NC	Weight (Mass) [kg]
OSP-E25BHD	49	43	76	2.6
OSP-E32BHD	62	47	92	4.9
OSP-E50BHD	80	50	121	9.6

Belt Actuator with Integrated Roller Guide

Size 25, 32, 50 Type: OSP-E..BHD

Standard Versions:

- Belt Actuator with integrated Roller Guide
- Drive shaft with clamp shaft or plain shaft
- Choice of motor mounting side
- Dovetail profile for mounting of accessories and the actuator itself

Options:

- Tandem version for higher moments
- Bi-parting version for synchronised movements
- Integrated planetary gearbox
- Drive shaft with - clamp shaft and plain shaft
- hollow shaft with keyway
- Special drive shaft versions on request

Installation Instructions

Use the threaded holes in the end cap for mounting the actuator.

Check if profile mountings are needed using the maximum allowable unsupported length graph.

At least one end cap must be secured to prevent axial sliding when profile mountings are used.

Characteristics	Description
Series	OSP-EBHD
Mounting	See drawings
Ambient temperature range	-30 °C to +80 °C
Installation	In any position
Encapsulation class	IP 54
Material	
Slotted profile	Extruded anodized aluminium
Belt	Steel-corded polyurethane
Pulley	Aluminium
Guide	Roller guide
Guide rail	Aluminium
Track	High alloyed steel
Roller cartridge	Steel rollers in aluminium housing
Steel band	Hardened, corrosion resistant steel
Screws, nuts	Zinc plated steel
Mountings	Zinc plated steel and aluminium

Weight (mass) and Inertia

Series	We At stroke 0 m	eight (mass)[kg Add per metre stroke	g] Moving mass	Inertia [x 10 ⁻⁶ kgm ²] At stroke 0 m Add per metre stroke per kg mass			
OSP-E25BHD	3.8	4.3	1.0	984	197	821	
OSP-E32BHD	7.7	6.7	1.9	3498	438	1459	
OSP-E50BHD	22.6	15.2	4.7	19690	1489	3103	
OSP-E25BHD*	5.7	4.3	2.0	1805	197	821	
OSP-E32BHD*	11.3	6.7	3.8	6358	438	1459	
OSP-E50BHD*	31.7	15.2	9.4	34274	1489	3103	

Maintenance

Depending on operating conditions, inspection of the actuator is recommended after 12 months or 3000 km operation. Please refer to the operating instructions supplied

with the actuator.

First service start-up

The maximum values specified in the technical data sheet for the different products must not be exceeded. Before taking the actuator as a machine into service, the user must ensure the adherence to the EC Machine Directive 2006/42/EG.

* Version: Tandem and Bi-parting (Option)

Sizing Performance Overview Maximum Loadings

Sizing of Actuator

The following steps are recommended for selection :

- 1. Determination of the lever arm length I_x , I_y and I_z from m_e to the centre axis of the actuator.
- 2. Calculation of the load F_x or F_y to the carrier caused by m_e $F = m_e \cdot g$
- Calculation of the static and dynamic force F_A which must be transmitted by the belt.

 $F_{A(horizontal)} = F_a + F_0$ = m_g · a + M₀ · 2π / U_{ZR}

 $\begin{aligned} \mathsf{F}_{A(\text{vertical})} &= \mathsf{F}_{g} + \mathsf{F}_{a} + \mathsf{F}_{0} \\ &= \mathsf{m}_{g} \cdot \mathsf{g} + \mathsf{m}_{g} \cdot \mathsf{a} + \mathsf{M}_{0} \cdot 2\pi \ / \ \mathsf{U}_{\text{ZR}} \end{aligned}$

- 4. Calculation of all static and dynamic bending moments M_x , M_y and M_z which occur in the application $M = F \cdot I$
- 5. Selection of maximum permissible loads via Table T3.
- 6. Calculation and checking of the combined load, which must not be higher than 1.
- 7. Checking of the maximum torque that occurs at the drive shaft in Table T2.
- 8. Checking of the required action force F_A with the permissible load value from Table T1.

For motor sizing, the effective torque must be determined, taking into account the cycle time.

Legend

- I = distance of a mass in the x-, y- and z-direction from the guide [m]
- m_e = external moved mass [kg]
- m_{LA} = moved mass of actuator [kg]
- $m_g = total moved mass$ $(m_e + m_{LA}) [kg]$
- $F_{x/y}$ = load excerted on the carrier in dependence of the installation position [N]
- $F_A = action force [N]$
- $M_0 =$ no-load torque [Nm]
- U_{ZR} = circumference of the pulley
- (linear movement per revolution) [m]
- g = gravity [m/s²]
- $a_{max.} = maximum acceleration [m/s²]$

Performance Overview

Characteristics		Unit	Description	I	
Series	Series			OSP-E32BHD	OSP-E50BHD
Max. speed	Max. speed			10	10
Linear motion p drive shaft	[mm]	180	240	350	
Max. rpm. drive	[min ⁻¹]	3000	2500	1700	
Max. effective	< 1 m/s:	[N]	1070	1870	3120
action force F_A	1-3 m/s:	[N]	890	1560	2660
at speed	> 3-10 m/s:	[N]	550	1030	1940
No-load torque		[Nm]	1.2	2.2	3.2
Max. acceleratior	[m/s²]	40	40	40	
Repeatability	[mm/m]	±0.05	±0.05	±0.05	
Max. standard s	troke length	[mm]	7000	7000	7000

Maximum Permissible Torque on Drive Shaft Speed / Stroke (T2)

OSP-E25BHD					OSP-E32BHD				OSP-E50BHD			
Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed. [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed. [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	
1 2 3 4 5 6 7 8 9	31 28 25 23 22 21 19 18 17	1 2 3 4 5 6 7	31 31 25 21 17 15	1 2 3 4 5 6 7 8 9	71 65 59 56 52 50 47 46 44	1 2 3 4 5 6 7	71 71 60 47 38 32 28	1 2 3 4 5 6 7 8 9	174 159 153 143 135 132 126 120 116	1 2 3 4 5 6 7	174 174 138 108 89 76 66	

Important:

The maximum permissible torque on the drive shaft is the lowest value of the speed or stroke-dependent torque value.

Example above:

OSP-E25BHD, stroke 5 m, required speed 3 m/s from table T2 speed 3 m/s gives 25 Nm and stroke 5 m gives 21 Nm. Max. torque for this application is 21 Nm.

Maximum Permissible Loads

1	
(Т	3)
	1

T1

Series	Max. applied load Fy, Fz [N]	Max. mome Mx	Mz	
OSP-E25BHD	986	11	64	64
OSP-E32BHD	1348	19	115	115
OSP-E50BHD	3704	87	365	365

Loads, Forces and Moments

Combined loads

If the actuator is subjected to several forces, loads and moments at the same time, the maximum load is calculated with the equation shown here.

The maximum permissible loads must not be exceeded.

Maximum Permissible Unsupported Length

Stroke length

The stroke lengths of the actuators are available in multiples of 1 mm up to 5700 mm.

Other stroke lengths are available on request.

The end of stroke must not be used as a mechanical stop.

Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft, but at least 100 mm.

The use of an AC motor with frequency converter normally requires a larger clearance than that required for servo systems.

For advice, please contact your local Parker Origa technical support department.

- * For the bi-parting version the maximum load (F) complies with the total of the load at both carriers. $F = F_{carriage 1} + F_{carriage 2}$
- k = Maximum permissible distance between mountings/mid-section support for a given load F.

If the loads are below or up to the curve in the graph the deflection will be max. 0.01 % of distance k.

Equation of Combined Loads

The total of the loads must not exceed >1 under any circumstances.

Maximum Permissible Unsupported Length – Placing of Profile Mounting

Parker Hannifin Corporation Pneumatic Division - Europe

Options and Accessories

OSP-E..BV, Vertical belt actuator with integrated ball bearing guide

STANDARD VERSION OSP-E..BV

Standard actuator head with clamp shaft or plain shaft and integrated ball bearing guide with two carriers.

Choice of side on which gearbox or motor is to be mounted.

Drive Shaft with Clamp Shaft Drive Shaft with Plain Shaft Drive Shaft with Clamp Shaft and Plain Shaft

DRIVE SHAFT

SHAFT"

shaft.

"CLAMP SHAFT AND PLAIN

SHAFT" OR "DOUBLE PLAIN

e.g. for parallel operation of two

Z-axes with an intermediate drive

Drive Shaft with Double Plain Shaft

ACCESSORIES

shaft.

MOTOR MOUNTINGS

For connection of gearbox or

clamp shaft, or with a motor

motor direct to drive shaft with

coupling to drive shaft with plain

MAGNETIC SWITCHES SET Magnetic switches with connector, mounting rail and magnets for contactless sensing of the end positions. Cable (suitable for cable chain) can be ordered separately in 5 m, 10 m or 15 m length.

MULTI-AXIS SYSTEMS For modular assembly of actuators up to multi-axis systems.

OPTIONS

TANDEM Additional actuator head and two additional carriers for higher bending moments.

HOLLOW SHAFT WITH KEYWAY For direct connection of gearbox or motor with keyway.

- Parker

Vertical belt actuator with integrated ball bearing guide in multi-axis systems

The OSP-E...BV vertical belt actuator with integrated ball bearing guide has been specially developed for lifting movements in the Z-axis. The especially low vibration OSP-E..BV vertical actuator in combination with

the heavy duty series OSP-E..BHD meets the highest demands in portal and handling applications.

Advantages

Features

- · Fixed actuator head for low moving mass
- Integrated ball bearing guide for high bending moments
- Magnetic switch set for contactless position sensing
- Easy to install
- Low maintenance

- High acceleration and speed · Drive Shaft versions with
- clamp shaft or plain shaft
- · Power transmission by belt
- · Moving axis profile
- Complete motor and control packages

Take the easy route and load all the dimensions into your system. The file is suitable for all current CAD systems available on CD-Rom or at www.parkeroriga.com

Vertical Belt Actuator with Integrated Ball Bearing Guide Size 20, 25 Type: OSP-E..BV

Standard Versions:

- Vertical belt actuator with integrated ball bearing guide
- Drive shaft with clamp shaft or plain shaft
- Choice of motor mounting side

Options:

- Tandem version for higher moments
- Drive shaft with - clamp shaft and plain shaft or double plain shaft
- hollow shaft with keyway
- Special drive shaft versions on request

Make sure that the OSP-E..BV is always operated by motor with holding brake on the actuator side. For the mounting of the external mass to be moved there are threaded holes in the end caps. Before mounting, check the correct centre of gravity distance from the table.

Mount the external mass on the belt fixed end, so that the belt tension can be checked and adjusted at the belt tensioning end without dismantling.

Maintenance

3000 km operation.

First service start-up

with the actuator.

Characteristics	Description
Series	OSP-EBV
Mounting	See drawings
Ambient temperature range	-30 °C to +80 °C
Installation	Vertical
Encapsulation class	IP 20
Material	
Profile	Extruded anodized aluminium
Belt	Steel-corded polyurethane
Pulley	Aluminium
Guide	Ball bearing guide
Guide rail	Hardened steel rail with high precision, accuracy class N
Guide carrier preloaded 0.08 x C, accuracy class	Steel carrier with integrated wiper system, grease nipples, s N
Screws, nuts	Zinc plated steel

Weight (mass) and Inertia

Series	Total weight (Mass) [kg]		Moving mass [kg]		Inertia [x 10 ⁻⁶ kgm ²]		
	At stroke 0 m	Actuator head	At stroke 0 m	Add per metre stroke	At Stroke 0 m	Add per metre stroke	Add per kg mass
OSP-E20BV	3.4	1.9	1.6	4.0	486	1144	289
OSP-E25BV	7.7	5.3	2.4	4.4	1695	2668	617
OSP-E20BV*	5.3	2 x 1.9	1.6	4.0	533	1144	289
OSP-E25BV*	13	2 x 5.3	2.4	4.4	1915	2668	617

* Version: Tandem (Option)

Depending on operating conditions, inspection of the actuator is recommended after 12 months or

Please refer to the operating instructions supplied

The maximum values specified in the technical data sheet for the different products must not be exceeded. Before taking the actuator as a machine into service, the user must ensure the adherence to

the EC Machine Directive 2006/42/EG.

T1

Sizing Performance Overview Maximum Loadings

Sizing of Actuator

The following steps are recommended for selection :

- 1. Determination of the lever arm length I_x , I_y and I_z from m_e to the centre axis of the actuator.
- 2. Calculation of the static and dynamic force F_A which must be transmitted by the belt. $F_A = F_g + F_a + F_0$ $= m_g \cdot g + m_g \cdot a + M_0 \cdot 2\pi / U_{ZR}$
- 3. Calculation of all static and dynamic moments M_x , M_y and M_z which occur in the application. $M = F \cdot I$
- 4. Selection of maximum permissible loads via Table T3.
- 5. Calculation and checking of the combined load, which must not be higher than 1.
- 6. Checking of the maximum moment that occurs at the drive shaft in Table T2.
- 7. Checking of the required action force F_A with the permissible load value from Table T1.

For motor sizing, the effective torque must be determined, taking into account the cycle time.

Legend

- distance of a mass in the x-, y- and z-direction from the guide [m]
- m_a = external moved mass [kg]
- $m_{IA} = moved mass of actuator [kg]$

$$m_{g} = total moved mass (m_{e} + m_{LA}) [kg]$$

- F_{A} = action force [N]
- M_0 = no-load torque [Nm]
- U_{ZR} = circumference of the pulley (linear movement per revolution) [m]

g = gravity [m/s²]

$$a_{max}$$
 = maximum acceleration [m/s²]

Performance Overview

Characteristics		Unit	Description		
Series			OSP-E20BV	OSP-E25BV	
Max. Speed		[m/s]	3.0	5.0	
Linear motion per revolu of drive shaft	[mm/U]	108	160		
Max. rpm. drive shaft		[min ⁻¹]	1700	1875	
Max.effective	1m/s	[N]	650	1430	
action force F _A	1-2m/s	[N]	450	1200	
atspeed	>3-5m/s	[N]	-	1050	
No-load torque ²⁾		[Nm]	0.6	1.2	
Max.acceleration/decel	eration	[m/s ²]	20	20	
Repeatability	+/- [mm/m]	0.05	0.05		
Max. standard stroke len	[mm]	1000	1500		
Max. recomended perm	issible mass ³⁾	[kg]	10	20	

¹⁾ Longer strokes on request

²⁾ As a result of static friction force

3) vertical

Maximum Permissible Torque on Drive Shaft Speed / Stroke (T2)

OSP-E-20BV				(OSP-E-2	5BV	
Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]
1	19	1	17	1	36	1	36)
2	17	2	11	2	30	2	36
3	16			3	30		
				4	28		
				5	27		

Important:

The maximum permissible torque on the drive shaft is the lowest value of the speed or stroke-dependent torque value.

Example above:

OSP-E25BV required speed v = 3 m/s and stroke = 1 m.

Accordingly Table T2 shows permissible moments of 30 Nm for the speed and 36 Nm for the stroke. Therefore the maximum moment at the drive shaft is determined by the speed and must not exceed 30 Nm.

Max. moments [Nm]

My

100

200

Мx

20

50

тз

Mz

100

200

Loads, Forces and Moments

Combined loads

If the actuator is subjected to several forces, loads and moments at the same time, the maximum load is calculated with the equation shown here.

The maximum permissible loads must not be exceeded.

The distance I (Ix, Iy, Iz) for calculation of the bending moments relates to the centre axis of the actuator.

Size	Max. applied Fy [N]	load [N] Fz [N]	Ма
OSP-E20BV	1600	1600	
OSP-E25BV	2000	3000	

Equation of Combined Loads

Maximum Permissible Loads

The total of the loads must not exceed >1 under any circumstances.

Distance of Centre of Gravity of External Mass from **Mid-Point of Actuator**

	0	SP-E20BV	OSP-E25BV		
Mass [kg]	Lever arm I _z [mm]	Max. permissible acceleration/ deceleration [m/s ²]	Lever arm I _z [mm]	Max. permissible acceleration/ deceleration [m/s ²]	
> 3 to 5	0	20	50	20	
>5to10	0	20	40	20	
>10 to 15	-	-	35	20	
>15to20	-	-	30	15	

Options and Accessories

OSP-E..B Belt actuator with internal plain bearing guide

STANDARD VERSIONS OSP-E..B

Carrier with internal guidance and magnet packet for contactless position sensing. Dovetail profile for mounting of accessories and the actuator itself.

DRIVE SHAFT VERSIONS

- Plain shaft or
- double plain shaft (Option)
 e.g. to drive two actuators
 in parallel.

OPTIONS

TANDEM For higher moment support.

BI-PARTING For perfectly synchronised bi-parting movements.

ACCESSORIES

MOTOR MOUNTING

END CAP MOUNTING For end-mounting of the actuator.

PROFILE MOUNTING For supporting long actuators or mounting the actuator on the dovetail grooves.

CLEVIS MOUNTING Carrier with tolerance and parallelism compensation to drive external linear guides.

INVERSION MOUNTING The inversion mounting, mounted on the carrier, transfers the driving force to the opposite side, e.g. for dirty environments.

MAGNETIC SWITCHES SERIES RST AND EST For contactless position sensing of end stop and intermediate carrier positions.

Tandem configuration with increased carrier distance for

Bi-parting version for precise synchronized movements

higher moment supports.

-

Belt actuator with internal plain bearing guide for point-to-point applications

A completely new generation of actuators which can be integrated into any machine layout neatly and simply.

Features

· Integrated drive and

guidance system

· Long available strokes

Tandem configuration with increased carrier distance

for higher moment supports

Advantages

- · Precise path and position control
- High speed operation
- Easy installation
- Low maintenance
- Ideal for precise point-topoint applications

Belt Actuator with Internal Plain Bearing Guide Size 25, 32, 50 Type: OSP-E..B

Standard Versions:

- Standard carrier with internal plain bearing guide
- Dovetail profile for mounting of accessories and the actuator itself
- Position of drive shafts

Options:

- Tandem version
- Bi-parting version for synchronized movements
- Drive shaft with double plain shaft

Installation Instructions

Use the threaded holes in the end cap for mounting the actuator. See if Profile Mountings are needed using the maximum allowable unsupported length graph. At least one end cap must be secured to prevent axial sliding when profile mounting is used.

When the actuator is moving an externally guided load, the compensation must be used.

The actuators can be fitted with the standard carrier mounting facing in any direction.

To prevent contamination such as fluid ingress, the actuator should be fitted with its sealing band facing downwards. The inversion mounting can be fitted to transfer the driving force to the opposite side.

Characteristics	Description
Series	OSP-EB
Mounting	See drawings
Ambient temperature range	-30 °C to +80 °C
Installation	See table
Encapsulation class	IP 54
Material	
Slotted Profile	Extruded anodized aluminium
Belt	Steel-corded polyurethane
Pulley	Aluminium
Guide bearings	Low friction plastic
Sealing band	Hardened corrosion resistant steel
Screws, nuts	Zinc plated steel
Mountings	Zinc plated steel and aluminium

Weight (mass) and Inertia

Series	at stroke 0 m	Weight (mas ad per meter stroke	s) [kg] moving mass	Inertia [x 10 ⁻⁶ kgm ²] at stroke 0 m ad per meter stro		
OSP-E25B	0.9	1.6	0.2	25	6.6	
OSP-E32B	1.9	3.2	0.4	43	10	
OSP-E50B	5.2	6.2	1.0	312	45	
OSP-E25B*	1.2	1.6	0.5	48	6.6	
OSP-E32B*	2.3	3.2	0.8	83	10	
OSP-E50B*	6.3	6.2	2.1	585	45	

* Version: Tandem and Bi-parting (Option)

Maintenance

All moving parts are long-term lubricated for a normal operational environment. Parker Origa recommends a check and lubrication of the actuator, and if necessary a change of the belt and wear parts, after an operation time of 12 months of operation or 3 000 km travel of distance. Additional greasing is easily done by using nipples in the slotted profile. Please refer to the operating instructions supplied with the actuator.

First service start-up

The maximum values specified in the technical data sheet for the different products must not be exceeded. Before taking the actuator as a machine into service, the user must ensure the adherence to the EC Machine Directive 2006/42/EG.

Sizing Performance Overview Maximum Loadings

Sizing of Actuator

The following steps are recommended for selection :

- 1. Required acceleration,
- 2. Required torque is shown on page 332
- 3. Check that maximum values in the table 3 are not exceeded
- Drive shaft by using table T2. (Pay attention to note under table) If value is lower than required, overview the moving profile or select if possible a bigger unit.
- Before sizing and specifying the motor, the average torque must be calculated using the cycle time of the application.
- 6. Check that the maximum allowable unsupported length is not exceeded.

Performance Overview

Characteristics	;	Unit	Description		
Size		OSP-E25B	OSP-E32B	OSP-E50B	
Max. speed		[m/s]	2	3	5
Linear motion drive shaft	[mm]	60	60	100	
Max. rpm drive	shaft	[min ⁻¹]	2 000	3 000	3 000
Max. effective	< 1 m/s:	[N]	50	150	425
action force	1- 2 m/s:	[N]	50	120	375
F _A at speed	> 2 m/s:	[N]	-	100	300
No-load torque)	[Nm]	0.4	0.5	0.6
Max. accelerat	ion/deceleration	[m/s²]	10	10	10
Repeatability		[mm/m]	±0.05	±0.05	±0.05
Max. stroke ler	ngth OSP-EB	[mm]	3000	5000	5000
Max. stroke ler	ngth OSP-EB*	[mm]	2 x 1500	2 x 2500	2 x 2500

* Bi-parting version

Maximum Permissible Torque on Drive Shaft Speed / Stroke (T2)

OSP-E25B				OSP-E32B				OSP-E50B			
Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed. [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed. [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]
1 2	0.9 0.9	1 2 3	0.9 0.9 0.9	1 2 3	2.3 2.0 1.8	1 2 0 3 4 5	2.3 2.3 2.3 2.3 1.8	1 2 3 4 5	10.0 9.5 9.0 8.0 7.5	1 2 3 4 5	10.0 10.0 9.0 7.0 6.0

Important:

The maximum permissible torque on the drive shaft is the lowest value of the speed or stroke-dependent torque value.

Example above:

OSP-E32B stroke 2 m, required speed 3 m/s;

From table T2: speed 3 m/s gives 1.8 Nm and stroke 2 m gives 2.3 Nm. Max. torque for this application is 1.8 Nm.

Maximum Permissible Loads

(T3)

Size	Max. applied load [N]	Max. mome	ents [Nm]	
	Fz	Mx	`My`	Mz
OSP-E25B	500	2	12	8
OSP-E32B	1200	8	25	16
OSP-E50B	3000	16	80	32
OSP-EB Bi-partional	The maximum load F m the two carriers	ust be equally	/ distributed	among

Equation of Combined Loads

The total of the loads must not exceed >1 under any circumstances.

Loads, Forces and Moments

Combined loads

If the actuator is subjected to several forces, loads and moments at the same time, the maximum load is calculated with the equation shown here.

The maximum permissible loads must not be exceeded.

The distance I (Ix, Iy, Iz) for calculation of the bending moments relates to the centre axis of the actuator

Maximum Permissible Unsupported Length

Stroke length

The stroke lengths of the actuators are available in multiples of 1 mm up to max. **OSP-E25B**: $3 \text{ m} / 2 \times 1.5 \text{ m}^*$ **OSP-E32B**: $5 \text{ m} / 2 \times 2.5 \text{ m}^*$ **OSP-E50B**: $5 \text{ m} / 2 \times 2.5 \text{ m}^*$ * Version: Bi-partional

Other stroke lengths are available on request.

The end of stroke must not be used as a mechanical stop. Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft.

The use of an AC motor with frequency converter normally requires a larger safety clearance than that required for servo systems.

For advise, please contact your local Parker Origa technical support department.

Maximum Permissible Unsupported Length – Placing of Profile Mounting

k = Maximum permissible distance between mountings/mid-section support for a given load F.

(Up to the curve in the above graph the deflection will be max. 0.2 % of distance k.)

Mounting on the Drive Shaft

Do not expose the drive shaft to uncontrolled axial or radial forces when mounting coupling or pulley, a steadying block should be used.

Pulleys

Minimum allowable number of teeth Z (AT5) at maximum applied torque.

Size	Min. Z	Min. ø
OSP-E25B	24	38
OSP-E32B	24	38
OSP-E50B	36	57

Required Acceleration

Distance / Time Graph

Using the required travel distance and total time, the adjacent graphs show the required acceleration based on maximum speed.

The graphs assume that acceleration and deceleration are equal.

Please note that specifying non-essential high acceleration or short cycle time will result in an oversized motor.

Max speed 2 m/s

Max speed 3 m/s

Max speed 5 m/s

Required Torque / Mass

Using the known mass, the direction of the application and the required acceleration from the distance-time graphs, the actuator can be sized and the required torque is shown in the adjacent graphs. Mass in graphs = Load + moving mass of the actuator.

Please note:

When using an additional guide, please add the mass of the carriage to the total moving mass.

Size OSP-E25B, Horizontal Application

Size OSP-E25B, Vertical Application

Size OSP-E32B, Horizontal Application

Size OSP-E32B, Vertical Application

Size OSP-E50B, Horizontal Application

Size OSP-E50B, Vertical Application

Ball screw actuator with internal plain bearing guide for high accuracy applications

A completely new generation of actuators which can be integrated into any machine layout neatly and simply.

Clean Room-Version Advantages Features certified to DIN EN ISO 14644-1 Accurate path and • Integrated drive and • position control guidance system Luci High force output Complete motor and • control packages **IPA** Easy installation • Diverse range of accessories • Excellent slow speed ٠ and mountings characteristics • Optimal screw pitches Ideal for precise traverse • (5, 10, 25 mm) operations Low friction support rings (e.g. machine feeds) and lifting applications Carrier Threaded holes Corrosion resistant steel sealing band End cap screws with threaded mounting holes **Ball bearing** Permanent magnet for contactless sensing Take the easy route and load Internally protected all the dimensions into your ball-screw nut system. The file is suitable Slotted profile with for all current CAD systems available on CD-Rom or at dovetail grooves www.parker-origa.com **Ball Screw Spindle** Drive shaft Heavy Duty guide SLIDELINE **Combination with** HD linear guides linear guides for heavy duty The dovetailed mounting rails provides for applications of the new actuator expand its heavier loads function into that of a universal system carrier. Modular system components SFI-plus POWERSLIDE are simply clamped on. displacement **Roller bearing** measuring system precision guidance for smooth travel and high dynamic or static loads. PROLINE The compact aluminium roller guide for high loads and velocities.

Standard Versions:

bearing guide

Options:

Tandem version

DIN EN ISO 14644-1

and the actuator itself

Type OSP-E25:5 mm

• Pitches of Ball Screw Spindle

Type OSP-E32: 5, 10 mm

Type OSP-E50: 5, 10, 25 mm

Clean room-version, according to

Displacement Measuring System SFI-plus

Ball Screw Actuator with Internal Plain Bearing Guide Size 25, 32, 50 Type: OSP-E..SB

Standard carrier with internal plain

Dovetail profile for mounting of accessories

Installation Instructions

Use the threaded holes in the end cap for mounting the actuator. See if Profile Mountings are needed using the maximum allowable unsupported length graph. At least one end cap must be secured to prevent axial sliding when profile mounting is used. When the actuator is moving an externally guided load, the compensation must be used.

The actuators can be fitted with the standard carrier mounting facing in any direction.

To prevent contamination such as fluid ingress, the actuator should be fitted with its sealing band facing downwards. The inversion mounting can be fitted to transfer the driving force to the opposite side.

Characteristics	Description
Series	OSP-ESB
Ambient temperature range	-20 °C to +80 °C
Installation	In any position
Mounting	See drawing
Encapsulation class	IP 54
Material	
Slotted Profile	Extruded anodized aluminium
Ball screw	Hardened steel
Ball screw nut	Hardened steel
Guide bearings	Low friction plastic
Sealing band	Hardened corrosion resistant steel
Screws, nuts	Zinc plated steel
Mountings	Zinc plated steel and aluminium

Weight (mass) and Inertia

Series	at stroke 0 m	Weight (mas ad per meter stroke	s) [kg] moving mass	Inertia [x at stroke 0 m	10 ⁻⁶ kgm ²] ad per meter stroke
OSP-E25SB	0.8	2.3	0.2	2.2	11
OSP-E32SB	2.0	4.4	0.4	8.4	32
OSP-E50SB	5.2	9.4	1.2	84.0	225

Maintenance

All moving parts are long-term lubricated for a normal operational environment. Parker Origa recommends a check and lubrication of the actuator, and if necessary a change of the belt and wear parts, after an operation time of 12 months of operation or 3 000 km travel of distance. Please refer to the operating instructions supplied with the actuator.

First service start-up

The maximum values specified in the technical data sheet for the different products must not be exceeded. Before taking the actuator as a machine into service, the user must ensure the adherence to the EC Machine Directive 2006/42/EG.

Sizing Performance Overview Maximum Loadings

Sizing of Actuator

The following steps are recommended for selection :

- 1. Recommended maximum acceleration is shown in graphs
- 2. Required torque is shown in graphs
- 3. Check that maximum values in the adjacent charts are not exceeded.
- 4. When sizing and specifying the motor, the RMS-average torque must be calculated using the cycle time of the application.
- 5. Check that the maximum allowable unsupported length is not exceeded.

Performance Overview

Characteristics	Unit	Descriptio	n				
Series		OSP-E25SB	OSP-E3	2SB	OSP-E	50SB	
Pitch	[mm]	5	5	10	5	10	25
Max. speed	[m/s]	0.25	0.25	0.5	0.25	0.5	1.25
Linear motion per revolution drive shaft	[mm]	5	5	10	5	10	25
Max. rpm, drive shaft [min-1] 3 000 3 000 3		3 000					
Max. effective action force F _A Corresponding torque on drive shaft	[N] [Nm]	250 0.35	600 0.75	1.3	1 500 1.7	3.1	7.3
No-load torque	[Nm]	0.2	0.2	0.3	0.3	0.4	0.5
Max. allowable torque on drive shaft	[Nm]	0.6	1.5	2.8	4.2	7.5	20
Repeatability	[mm/m]	±0.05	±0.05		±0.05		
Max. Standard stroke length	[mm]	1100	2000		3200		

Loads, Forces and Moments

Combined loads

If the actuator is subjected to several forces, loads and moments at the same time, the maximum load is calculated with the equation shown here.

The maximum permissible loads must not be exceeded.

 $\begin{array}{l} \mathsf{M} = \mathsf{F} \cdot \mathsf{I} \left[\mathsf{N}\mathsf{m}\right] \\ \mathsf{M}_{x} = \mathsf{M}_{x \ \text{static}} + \mathsf{M}_{x \ \text{dynamic}} \\ \mathsf{M}_{y} = \mathsf{M}_{y \ \text{static}} + \mathsf{M}_{y \ \text{dynamic}} \\ \mathsf{M}_{z} = \mathsf{M}_{z \ \text{static}} + \mathsf{M}_{z \ \text{dynamic}} \end{array}$

The distance I (Ix, Iy, Iz) for calculation of the bending moments relates to the centre axis of the actuator.

Maximum Permissible Loads

Size	Max. applied load [N] Fz	Max. mome Mx	ents [Nm] My	Mz
OSP-E25SB	500	2	12	8
OSP-E32SB	1200	8	25	16
OSP-E50SB	3000	16	80	32

Equation of Combined Loads

The total of the loads must not exceed >1 under any circumstances.

Performance /

a reduced performance.

The performance to be expected depends

on the maximum required actions force of

An increase of the action force will lead to

Action Force

the application.

Maximum rpm / Stroke

At longer strokes the speed has to be reduceed according to the adjacent graphs.

Maximum rpm / Stroke

The maximum rpm shown in the graph, is 80% of the critical rpm.

Performance as a function of the action force

Distance / Time Graph

The adjacent graphs show travel distance and total time at maximum speed and recommended maximum acceleration. The graph assumes that acceleration and deceleration are equal.

Distance / Time Graph

Required Torque / Mass

Using the known mass, the direction of the application and the recommended acceleration, the actuator can be sized and the required torque is shown in the adjacent graphs.

Mass in graphs = Load + moving mass of the actuator according to the weight chart.

Please mind:

If an additional guide is used, mind the weight of the guide carriage.

Size OSP-E25SB, Pitch 5mm Acceleration 2 m/s²

Size OSP-E32SB, Pitch 5mm Acceleration 2 m/s²

Size OSP-E32SB, Pitch 10mm Acceleration 4 m/s²

Size OSP-E50SB, Pitch 5mm Acceleration 2 m/s²

Size OSP-E50SB, Pitch 10mm Acceleration 4 m/s²

Size OSP-E50SB, Pitch 25mm Acceleration 10 m/s²

-**Parke**r

Trapezoidal screw actuator with internal plain bearing guide for intermittent applications

A completely new generation of actuators which can be integrated into any machine layout neatly and simply.

Advantages

Features

• Integrated drive and

guidance system

and mountings

Complete motor and control packages

Diverse range of accessories

- Accurate path and position control
- High force output
- Self-locking
- Excellent slow speed characteristics
- Easy installation
- Low maintenance

Double row

angular contact ball bearings

 Ideal for level regulation, lifting and other applications with intermittent operations

> Corrosion resistant steel sealing band

Special options available

Carrier

Low friction support rings

Threaded holes

Permanent magnet for contactless sensing -0

SYSTEM PL

Take the easy route and load all the dimensions into your system. The file is suitable for all current CAD systems – available on CD-Rom or at www.parker-origa.com

mounting holes
Drive
shaft

End cap screws

with threaded

The dovetailed mounting rails of the new actuator expand its function into that of a universal system carrier. Modular system components are simply clamped on.

Trapezoidal

screw

Heavy Duty guide HD linear guides for heavy duty applications

Plastic nut

SFI-plus displacement measuring system

SLIDELINE Combination with sliding guide for heavy-duty operation

Slotted profile with dovetail grooves

POWERSLIDE Roller bearing precision guidance for smooth travel and high dynamic or static loads.

PROLINE The compact aluminium roller guide for high loads and velocities.

Trapezoidal Screw Actuator with Internal Plain Bearing Guide Size 25, 32, 50 Type: OSP-E..ST

Standard Versions:

- Standard carrier with internal plain bearing guide
- Dovetail profile for mounting of accessories and the actuator itself
- Pitch of Trapezoidal Spindle: Type OSP-E25ST: 4 mm Type OSP-E32ST: 4 mm Type OSP-E50ST: 6 mm

Options:

- Displacement Measuring System SFI-plus
- Keyway

Installation Instructions

Use the threaded holes in the free end cap and a profile mounting close to the motor end for mounting the actuator. See if profile mountings are needed using the maximum permissible unsupported length graph.

At least one end cap must be secured to prevent axial sliding when Profile Mounting is used.

When the actuator is moving an externally guided load, the compensation must be used.

The actuators can be fitted with the standard carrier mounting facing in any direction.

To prevent contamination such as fluid ingress, the drive should be fitted with its sealing band facing downwards. The inversion mounting can be fitted to transfer the driving force to the opposite side.

Characteristics	Description
Series	OSP-EST
Mounting	See drawings
Ambient temperature range	-20 °C to +70 °C
Installation	In any position
Material	
Slotted Profile	Extruded anodized aluminium
Trapazoidal screw	Cold rolled steel
Drive nut	Thermoplastic polyester
Guide bearings	Low friction plastic
Sealing band	Hardened corrosion resistant steel
Screws, nuts	Zinc plated steel
Mountings	Zinc plated steel and aluminium

Weight (mass) and Inertia

Series	Weight (mass) [kg] at stroke 0 m ad per meter stroke moving mass			Inertia [x at stroke 0 m	10 ⁻⁶ kgm ²] ad per meter stroke
OSP-E25ST	0.9	2.8	0.2	6	30
OSP-E32ST	2.1	5.0	0.5	21.7	81
OSP-E50ST	5.1	10.6	1.3	152	400

Maintenance

All moving parts are long-term lubricated for a normal operational environment. Parker Origa recommends a check and lubrication of the actuator, and if necessary a change of the belt and wear parts, after an operation time of 12 months of operation or 3000 km travel of distance. Please refer to the operating instructions supplied with the drive

First service start-up

The maximum values specified in the technical data sheet for the different products must not be exceeded. Before taking the actuator as a machine into service, the user must ensure the adherence to the EC Machine Directive 2006/42/EG.

Sizing Performance Overview Maximum Loadings

Sizing of Actuator

The following steps are recommended for selection :

- 1. Check that maximum values in the table T3 are not exceeded.
- 2. Check the maximum values in graph are not exceeded.
- 3. When sizing and specifying the motor, the RMS-average torque must be calculated using the cycle time of the application.
- 4. Check that the maximum allowable unsupported length is not exceeded

Performance Overview

Characteristics	Unit	Description		
Size		OSP-E25ST	OSP-E32ST	OSP-E50ST
Pitch	[mm]	4	4	6
Max. speed	[m/s]	0.1	0.1	0.15
Linear motion per revolution drive shaft	[mm]	4	4	6
Max. rpm, drive shaft	[min-1]	1500	1500	1500
Max. effective action force FA Corresponding torque on drive shaft	[N] [Nm]	600 1.35	1300 3.2	2 500 8.8
No-load torque	[Nm]	0.3	0.4	0.5
Max. allowable torque on drive shaft	[Nm]	1.55	4.0	9.4
Self-locking force FL1)	[N]	600	1300	2500
Repeatability	[mm/m]	±0.5	±0.5	±0.5
Max. Standard stroke length	[mm]	1100	2000	2500*

¹⁾ Related to screw types Tr 16x4, Tr 20x4, TR 30x6

* For strokes longer than 2000 mm in horizontal apllications, please contact our customer support.

Loads, Forces and Moments

Combined loads

If the actuator is subjected to several forces, loads and moments at the same time, the maximum load is calculated with the equation shown here.

The maximum permissible loads must not be exceeded.

 $\begin{array}{l} M = F \cdot I \left[Nm \right] \\ M_x = M_x \,_{static} + M_x \,_{dynamic} \\ M_y = M_y \,_{static} + M_y \,_{dynamic} \\ M_z = M_z \,_{static} + M_z \,_{dynamic} \end{array}$

The distance I (Ix, Iy, Iz) for calculation of the bending moments relates to the centre axis of the actuator.

Maximum Permissible Loads

Size	Max. applied load [N] Fz	Max. mome Mx	ents [Nm] My	Mz
OSP-E25ST	500	2	24	7
OSP-E32ST	1000	6	65	12
OSP-E50ST	1500	13	155	26

Equation of Combined Loads

The total of the loads must not exceed >1 under any circumstances.

тз

Maximum Permissible Unsupported Length

Stroke length

The stroke lengths of the actuators are available in multiples of 1 mm up to the following maximum stroke lengths. **OSP-E25ST**: max. 1100 mm **OSP-E32ST**: max. 2000 mm **OSP-E50ST**: max. 2500 mm * Other stroke lengths are available on request.

* For strokes longer than 2000 mm in horizontal applications, please contact our customer support

The end of stroke must not be used as a mechanical stop.

Allow an additional safety clearance of minimum 25 mm at both ends.

The use of an AC motor with frequency converter normally requires a larger safety clearance than that required for servo systems.

For advise, please contact your local Parker Origa technical support department.

Maximum Permissible Unsupported Length – Placing of Profile Mounting

k = Maximum permissible distance between mountings/mid-section support for a given load F.

(Up to the curve in the above graph the deflection will be max. 0.2 % of distance k.)

Mounting on the Drive Shaft

Do not expose the drive shaft to uncontrolled axial or radial forces when mounting coupling or pulley, a steadying block should be used.

Minimum allowable number of teeth (AT5) and diameter of pulley at maximum applied torque.

Size	Min. Z	Min. ø
OSP-E25ST	24	38
OSP-E32ST	24	38
OSP-E50ST	36	57

Pulleys

Maximum rpm / Stroke

At longer strokes the speed has to be reduced according to the adjacent graphs.

Maximum rpm / Stroke

The maximum rpm shown in the graph, is 80% of the critical rpm.

Performance / Action Force

The actuators are designed for a 10% intermittent usage.

The performance to be expected depends on the maximum required actions force of the application.

An increase of the action force will lead to a reduced performance.

Performance as a function of the action force

Note: Graph above is based upon 10% intermittent usage

Ball screw actuator with internal plain bearing guide and piston rod for accurate piston rod applications

A completely new generation of actuators which can be integrated into any machine layout neatly and simply.

Advantages

- High output force
- Excellent running characteristics
- Accurate path and position control
- High levels of repeatability

Features

- Extending drive rod
- Ball screw spindle
- Non-rotating drive rod
- Continuous duty operation
- Large range of accessories

Double row angular contact ball bearings

Take the easy route and load all the dimensions into your system. The file is suitable for all current CAD systems – available on CD-Rom or at www.parker-origa.com

Options and Accessories

OSP-E..SBR Ball screw actuator with internal plain bearing guide and piston rod

STANDARD VERSIONS OSP-E..SBR

Standard piston rod with internal guidance and integrated magnet set for contactless position sensing. Dovetail profile for mounting of accessories and the actuator itself.

BALL SCREW PITCH

The ball screws spindles are available in various pitches: OSP-E25SBR: 5 mm OSP-E32SBR: 5, 10 mm OSP-E50SBR: 5, 10, 25 mm

ACCESSORIES

MOTOR MOUNTINGS

END CAP MOUNTING For end-mounting the actuator on the extending rod side.

Flange Mounting C For end-mounting the actuator on the extending rod side.

PROFILE MOUNTING For mounting the actuator on the dovetail grooves and on the motor end.

Trunning mounting EN in combination with pivot mounting EL.

 steplessly adjustable in axial direction.

COMPENSATION Piston Rod eye

Piston rod Clevis

Piston Rod compensating coupling For compensating of radial and angular misaligments

MAGNETIC SWITCHES SERIES RST AND EST For contactless position sensing of end stop and intermediate carrier positions.

Ball Screw Actuator with Internal Plain Bearing Guide and Piston Rod Size 25, 32, 50 Type: OSP-E..SBR

Standard Versions:

- Standard piston rod with internal plain bearing guide
- Pitches of Ball Screw Spindle: Type OSP-E25SBR: 5 mm Type OSP-E32SBR: 5, 10 mm Type OSP-E50SBR: 5, 10, 25 mm

Options:

• Keyway version

Installation Instructions

Use the threaded holes in the free end cap and a profile mounting close to the motor end for mounting the actuator.

The piston rod is locked against rotations, but must not be used for radial loads Mx, that need to be guided externally. A compensation part e. g. piston rod eye is recommended.

Characteristics	Description	
Series	OSP-ESBR	
Mounting	See drawings	
Ambient temperature range	-20 °C to +80 °C	
Installation	In any position	
Encapsulation class	IP 54	
Material		
Slotted Profile	Extruded anodized aluminium	
Ball screw	Steel	
Ball nut	Steel	
Piston rod	Stainless steel	
Guide bearings	Low friction plastic	
Sealing band	Hardened corrosion resistant steel	
Screws, nuts	Zinc plated steel	
Mountings	Zinc plated steel and aluminium	

Weight (mass) and Inertia

Series	Total weight (Mass) [kg]		Moving mass [kg]		Inertia [x 10 ⁻⁶ kgm ²]	
	At stroke 0 m	Actuator head	At stroke 0 m	Add per metre stroke	At Stroke 0 m	Add per metre stroke
OSP-E25SBR	0.7	3.0	0.2	0.9	1.2	11.3
OSP-E32SBR	1.7	5.6	0.6	1.8	5.9	32.0
OSP-E50SBR	4.5	10.8	1.1	2.6	50.0	225.0

Maintenance

All moving parts are long-term lubricated for a normal operational environment. Parker Origa recommends a check and lubrication of the actuator, and if necessary a change of wear parts, after an operation time of 12 months or 3000 km travel of distance. Please refer to the operating instructions supplied with the actuator.

First service start-up

The maximum values specified in the technical data sheet for the different products must not be exceeded. Before taking the actuator as a machine into service, the user must ensure the adherence to the EC Machine Directive 2006/42/EG.

Sizing Performance Overview Maximum Loadings

Sizing of Actuator

The following steps are recommended for selection :

- 1. Check that the maximum values in the adjacent chart and transverse force/ stroke graph below are not exceeded.
- 2. Check the lifetime/travel distance in graph below.
- 3. When sizing and specifying the motor, the RMS-average torque must be calculated using the cycle time in application

Transverse Force / Stroke

The permissible transverse force is reduced with increasing stroke length. according to the adjacent graphs.

Maximum rpm / Stroke

At longer strokes the speed has to be reduceed according to the adjacent graphs.

Performance Overview

Characteristics	Unit	Description					
Series		OSP-E25SBR	OSP-E32SBR OSP-E50		E50S	BR	
Pitch	[mm]	5	5	10	5	10	25
Max. speed	[m/s]	0.25	0.25	0.5	0.25	0.5	1.25
Linear motion per revolution drive shaft	[mm]	5	5	10	5	10	25
Max. rpm drive shaft		[min ⁻¹]	3000	3000		3000)
Max. effective action force F	[N]	260	900		1200		
Corresponding torque	[Nm]	0.45	1.1	1.8	1.3	2.8	6.0
No-load torque	[Nm]	0.2	0.2	0.3	0.3	0.4	0.5
Max. allowable torque on drive shaft	[Nm]	0.6	1.5	2.8	4.2	7.5	20
Max. allowable acceleration	[m/s ²]	5	5		5		
Typical repeatability	[mm/m]	±0.05	±0.05		±0.05		
Max.Standard stroke length	[mm]	500	500 500				

Transverse Force / Stroke

Maximum rpm / Stroke

Performance as a function of the action force

Action force [N] 3000 1 = OSP-E25SBR Pitch 5 mm 3 = OSP-F32SBB - Pitch 5 mm 2 = OSP-E32SBR - Pitch 10 mm4 = OSP-E50SBR - Pitch 5 mm2500 6 = OSP-E50SBR - Pitch 10 mm 2000 5 = OSP-E50SBR - Pitch 25 mm 150 1000 500 3000 4000 5000 6000 7000 9000 10000 e [km] Perfor

Performance / Action Force

The performance to be expected depends on the maximum required actions force of the application.

An increase of the action force will lead to a reduced performance.

Parker Hannifin Corporation Pneumatic Division - Europe

Trapezoidal screw actuator with internal plain bearing guide and piston rod for intermittent applications

A completely new generation of actuators which can be integrated into any machine layout neatly and simply.

Advantages

Accurate path and position control

High force output

- Self-locking
- Excellent slow speed characteristics
- Easy installation
- Low maintenance
- Ideal for level regulation, lifting and other applications with intermittent operations

Features

- Piston rod-end dimensions conforming to ISO pneumatic standards
- Complete motor and control packages
- Diverse range of accessories and mountings
- Special options available

Take the easy route and load all the dimensions into your system. The file is suitable for all current CAD systems – available on CD-Rom or at www.parker-origa.com

Options and Accessories

OSP-E..STR Trapezoidal screw actuator with internal plain bearing guide and piston rod

STANDARD VERSIONS OSP-E..STR

Standard piston rod with internal guidance and integrated magnet set for contactless position sensing. Dovetail profile for mounting of accessories and the actuator itself.

ACCESSORIES

MOTOR MOUNTINGS

END CAP MOUNTING For end-mounting the actuator on the extending rod side.

FLANGE MOUNTING C For end-mounting the actuator on the extending rod side.

PROFILE MOUNTING For mounting the actuator on the dovetail grooves and on the motor end.

TRUNNING MOUNTING EN in combination with pivot mounting EL.

 steplessly adjustable in axial direction. COMPENSATION PISTON ROD EYE

PISTON ROD CLEVIS

PISTON ROD COMPENSATING COUPLING For compensating of radial and angular misaligments

MAGNETIC SWITCHES SERIES RST AND EST For contactless position sensing of end stop and intermediate carrier positions.

Trapezoidal Screw Actuator with Internal Plain Bearing Guide and Piston rod

Size 25, 32, 50 Type: OSP-E..STR

Standard Versions:

- Dovetail profile for mounting of accessories and the actuator itself
- Pitch of Trapezoidal Spindle: Type OSP-E25STR: 3 mm Type OSP-E32STR: 4 mm Type OSP-E50STR: 5 mm

Contactless position sensing

Please use the magnetic switch mentioned below:

 KL3096 (Type RS-K, normaly closed, Reed-contact, with cable)
 KL3098 (Type ES-S, Magnetic electronic, PNP-switch with DIN-plug)

Installation Instructions

Use the threaded holes in the free end cap and a profile mounting close to the motor end for mounting the actuator.

The piston rod is not locked against rotation and needs to be guided externally. A compensation part e. g. piston rod eye is recommended.

Characteristics	Description
Series	OSP-ESTR
Mounting	See drawings
Ambient temperature range	-20 °C to +70 °C
Installation	In any position
Encapsulation class	IP 54
Material	
Slotted Profile	Extruded anodized aluminium
Trapazoidal screw	Cold rolled steel
Drive nut	Thermoplastic polyester
Piston rod	Stainless steel
Guide bearings	Low friction plastic
Sealing band	Hardened corrosion resistant steel
Screws, nuts	Zinc plated steel
Mountings	Zinc plated steel and aluminium

Weight (mass) and Inertia

Series	Total weight (Mass) [kg]		Moving mass [kg]		Inertia [x 10 ⁻⁶ kgm ²]	
	At stroke 0 m	Actuator head	At stroke 0 m	Add per metre stroke	At Stroke 0 m	Add per metre stroke
OSP-E25STR	0.4	2.9	0.1	0.7	1.1	10.3
OSP-E32STR	0.9	5.4	0.2	1.2	3.9	29.6
OSP-E50STR	2.4	10.6	0.8	1.6	24.6	150

Maintenance

All moving parts are long-term lubricated for a normal operational environment. Parker Origa recommends a check and lubrication of the actuator, and if necessary a change of wear parts, after an operation time of 12 months or 3000 km travel of distance. Please refer to the operating instructions supplied with the actuator.

First service start-up

The maximum values specified in the technical data sheet for the different products must not be exceeded. Before taking the actuator as a machine into service, the user must ensure the adherence to the EC Machine Directive 2006/42/EG.

Sizing Performance Overview Maximum Loadings

Sizing of Actuator

The following steps are recommended for selection :

- Check that the maximum values in the adjacent chart and transverse force/ stroke graph below are not exceeded.
- 2. Check the lifetime/travel distance in graph below.
- 3. When sizing and specifying the motor, the RMS-average torque must be calculated using the cycle time in application

Performance Overview

Characteristics	Unit	Description			
Size		OSP-E25STR	OSP-E32STR	OSP-E50STR	
Pitch	[mm]	3	4	5	
Max. speed	[m/s]	0.075	0.1	0.125	
Linear motion per revolution, drive shaft	[mm]	3	4	5	
Max. rpm, drive shaft	[min ⁻¹]	1500 ²⁾	1500	1500	
Max. effective action force F_A Corresponding torque on drive shaft	[N] [Nm]	800 1.35	1600 3.4	3300 9.25	
No-load torque	[Nm]	0.3	0.4	0.5	
Max. allowable torque on drive shaft	[Nm]	1.7	4.4	12	
Self-locking force F ¹	[N]	800	1600	3300	
Typical repeatability	[mm/m]	±0,5	±0,5	±0,5	
Max.Standard stroke length	[mm]	500	500	500	

¹⁾ Related to screw types Tr 12x3, Tr 16x4, Tr 24x5

²⁾ from 0,4 m stroke max. 1200 min-1 permissible

Transverse Force / Stroke

Transverse Force / Stroke

The graph is based upon 10% intermittent usage

Performance / Action Force

The Actuators are designed for a 10% intermittent usage. The performance to be expected depends on the maximum required actions force of the application. An increase of the action force will lead to

a reduced performance.

Performance as a function of the action force

The graph is based upon 10% intermittent usage

